ANGELS

Pearson Edexcel – Monday 8 June 2020 - Paper 3 (Calculator) Higher Tier

1.

14	60 (supported)	M1	for angle <i>DBF</i> , eg 180 – 100 (= 80)	Angles may be shown on the diagram or in working
		M1	for angle <i>BFD</i> , eg 180 – "80" – 40 (= 60) or for angle <i>CBF</i> = 40	
		A1	for angle <i>ABD</i> = 60	
		C1	(dep M2) for at least 2 reasons from <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 Angles in a triangle add up to 180	Underlined words need to be shown; reasons need to be linked to their method
			Alternate segment theorem OR	
			Opposite angles of a cyclic quadrilateral add up to 180 Alternate segment theorem Angles on a straight line add up to 180	

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

2.

6	85	M1	for correct use of corresponding angles eg $AEB = 63$	Angles must be clearly labelled on the
6		MI		
	with working and		or co-interior angles eg BCD = 180 – 148 (= 32) or DEB = 180 – 63 (= 117)	diagram or otherwise identified. Full
	reasons			solution must be seen.
		M1	(dep) for a complete method to find angle EAB	Correct method can be implied from
			eg. 180 – "63" – (180 – 148) or 148 – "63" or "117" – (180 – 148)	angles on the diagram if no ambiguity or contradiction.
		A1	for $EAB = 85$ (identified)	
		C2	(dep on M2) all working correct with all appropriate reasons stated.	When reasons are given the key words
			Corresponding angles are equal	underlined must be present.
			Allied angles / Co-interior angles add up to 180	Reasons need to be linked to their
			Angles on a straight line add up to 180	method; any reasons not linked, do
			Angles in a triangle add up to 180	not credit. There should be no
			The exterior angle of a triangle is equal to the sum of the interior opposite angles.	incorrect reasons given.
			The exterior angle of a triangle is equal to the sum of the interior opposite angles.	meoneer reasons given.
		(C1	for one reason relating to parallel lines clearly used and stated	
		(01	or for any two reasons clearly stated for their fully correct method)	
			or for any two reasons clearly stated for their fully correct method)	

Pearson Edexcel - Thursday 6 June 2019 - Paper 2 (Calculator) Higher Tier

18	75° with reasons	MI	for finding angle $BAD = \frac{180 - 40}{2}$ (= 70)	Could be shown on the diagram or in working
			or angle $BDA = \frac{180 - 40}{2} (= 70)$	
		MI	for finding angle <i>BCD</i> = 180 - "70" (=110) or 40 + x + 70 + x = 180	
		Al	for finding angle $ADE = 75$	
		C2	(dep M2) for <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180 and one other reason; all reasons given must be appropriate for their working	Underlined words need to be shown; reasons need to be linked to their method
			Base angles of an <u>isosceles triangle</u> are equal <u>Angles</u> in a <u>triangle</u> add up to 180, <u>Angles</u> on a straight <u>line</u> add up to 180 [or <u>exterior angle</u> of a <u>cyclic</u> <u>quadrilateral</u> is equal to the <u>interior opposite angle</u>]	
		(C1	(dep M2) for <u>Opposite angles</u> of a <u>cyclic quadrilateral</u> add up to 180, or all other reasons given appropriate for their working)	Apply the above criteria

Pearson Edexcel - Tuesday 6 November 2018 - Paper 1 (Non-Calculator) Higher Tier

4.

12	21	C1	for angle $OAB = 90 - 56 (= 34)$	Throughout, angles may be written on the
		C1	for process to find angle CAD (= 69) or angle BCA (= 56) or angle COA (= 138), eg use of alternate segment theorem or angle at centre is twice the angle at the circumference	diagram; accept as evidence if correct. Ignore absence of degree sign Reasons need not be given.
		C1	cao	

Pearson Edexcel - Monday 12 November 2018 - Paper 3 (Calculator) Higher Tier

5.

12	73.6	P1	for correct initial use of Pythagoras eg 5 ² + 5 ² (=50)	
			or a trigonometric ratio in the form $\frac{5+2}{0.5AC} = \sin 45$ oe	
		P1	for finding the length of half of the diagonal eg $\sqrt{50^{\circ}} \div 2$ (= 3.5) or $0.5AC = \frac{5+2}{\sin 45}$ (=3.5) oe	do not accept $\sqrt{20} \div 2$
		P1	for process to use tan eg tan $TAC = (12 \div ``3.5'') (=3.3)$ or complete alternative method arriving at an equation with the subject as sin TAC or cos TAC	
		A1	for an answer in the range 73.58 to 74.1	

Pearson Edexcel - Thursday 24 May 2018 - Paper 1 (Non-Calculator) Higher Tier

11	90 - 2x	M1	for identifying an unknown angle eg $BAO = x$, $AOB = 180 - 2x$, $OBC = 90$, $ABC = 90 + x$	Could be shown on the diagram alone
		MI	full method to find the required angle eg a method leading to $180 - x - x - 90$	Needs to be an algebraic method Accept $x + x + 90 + y = 180$ for M2
		A1	for 90 – 2x	
		C2	(dep M2) full reasons for their method, from base angles in an <u>isosceles triangle</u> are equal <u>angles</u> in a <u>triangle</u> add up to 180° a <u>tangent</u> to a circle is perpendicular to the <u>radius (diameter)</u> <u>angles</u> on a straight <u>line</u> equal 180° the <u>exterior angle</u> of a triangle is <u>equal</u> to the sum of the <u>interior</u> <u>opposite angles</u>	Underlined words need to be shown; reasons need to be linked to their method; any reasons not linked do not credit.
		(C1	(dep M1) for a <u>tangent</u> to a circle is perpendicular to the <u>radius</u> (diameter))	Apply the above criteria

Pearson Edexcel - Tuesday 12 June 2018 - Paper 3 (Calculator) Higher Tier

7.

5 (a	50.5	M1	for $\cos ABC = \frac{7}{11}$ (0.63) oe	Must be a complete statement for cos, sin or tan with all three elements present.
		A1	for answer in the range 50.4 to 50.51	If an answer is in the range 50.4 to 50.51 is given in the working space then incorrectly rounded, award full marks.
(b) Increase (supported)	Cl	States increase with supporting reason eg " $\frac{7}{10}$ is greater than $\frac{7}{11}$ " "0.636 is less than 0.7" "cos increases as angle decreases" "decreasing the denominator increases the value of the fraction" "angle is now 45.6" (accept 45.5 – 45.6)	If figures are given they must be correct (truncated or rounded).

Pearson Edexcel - Wednesday 8 November 2017 - Paper 3 (Calculator) Higher Tier

8.

20	Proof	C1	draws OC and considers angles in an isosceles triangle (algebraic notation may be used, eg two angles labelled x)
		C1	finds sum of angles in triangle <i>ABC</i> , eg $x + x + y + y = 180$, or sum of angles at <i>O</i> , eg $180 - 2x + 180 - 2y$
		Cl	complete method leading to $ACB = 90$
		CI	complete proof with all reasons given, eg base angles of an <u>isosceles triangle</u> are equal, <u>angles</u> in a <u>triangle</u> add up to 180°, <u>angles</u> on a straight <u>line</u> add up to 180°

Pearson Edexcel - Specimen Papers Set 1 - Paper 1 (Non-Calculator) Higher Tier

9.

|--|

Pearson Edexcel - Sample Paper 2 - (Calculator) Higher Tier

11	29°	C1	angle $OTP = 90^{\circ}$, quoted or shown on the diagram
		M1	method that leads to $180 - (90 + 32)$ or 58 shown at <i>TOP</i> OR that leads to 122 shown at <i>SOT</i>
		M1	complete method leading to "58" \div 2 or (180 – "122") \div 2 or 29 shown at <i>TSP</i>
		C1	for angle of 29° clearly indicated and appropriate reasons linked to method eg angle between <u>radius</u> and <u>tangent</u> = 90° and sum of <u>angles</u> in a <u>triangle</u> = 180°; <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp</u> <u>angles</u> and base <u>angles</u> of an <u>isos</u> triangle are <u>equal</u> or <u>angle</u> at <u>centre</u> = $2x$ <u>angle</u> at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u>

Pearson Edexcel - Thursday 26 May 2016 - Paper 1 (Non-Calculator) Higher Tier

11.

*20	69° (supported)	5	M1 for method to find angle PSR eg 90 – 48 (= 42) or method in triangle POS to find angle POS (= 84) M1 for method to find angle PMS (= 42) A1 cao C2 (dep on at least M1) for correct and complete set of appropriate reasons (C1 for one correct reason involving a circle theorem supported by working) eg The <u>tangent</u> to a circle is <u>perpendicular (90)</u> to the <u>radius</u> (<u>diameter</u>) <u>Alternate segment theorem</u> . <u>Angles in a triangle</u> add up to <u>180</u> Base <u>angles</u> of an <u>isosceles</u> triangle are <u>equal</u> . The <u>angle</u> at the <u>centre</u> of a circle is <u>twice the angle</u> at the <u>circumference</u> .
-----	--------------------	---	---

Pearson Edexcel - Friday 7 November 2014 - Paper 2 (Calculator) Higher Tier

12.

$M1 \text{ for } (DBC =) 180 - ^{\circ}65^{\circ} - 80 (=35)$ A1 cao supported by working OR M1 for $(AOB =) 180 - 2 \times 25 (= 130)$ M1 for $(ADB =) 130 + 2 (=65)$ M1 for $(DAC =) 180 - 65 - 80$ A1 cao supported by working.

Pearson Edexcel - Monday 9 June 2014 - Paper 1 (Non-Calculator) Higher Tier

13.

21		55	3	M1 for angle ABO = 90 or angle ADO = 90, or angle OBC = 15 or angle FDO = 90 or angle EBO = 90 (could be marked on the diagram) M1 for reflex angle BOD = $360 - (360 - 90 - 90 - 40) (= 220)$ or angle BCD = $(360 - 90 - 90 - 40) + 2 (= 70)$ or angle BDO or angle DBO = $90 - (180 - 40)/2 (= 20)$ or angle BOC = $180 - (15 + 15) (=150)$ A1 cao
----	--	----	---	---

Pearson Edexcel - Wednesday 6 November 2013 - Paper 1 (Non-Calculator) Higher Tier

*22	360 - y	$180 - \frac{y}{2}$	4	M1 $ADC = \frac{y}{2}$
				A1 180 – $\frac{y}{2}$ C2 (dep on M1) for both reasons Angle at centre is twice the angle at the circumference Opposite angles in cyclic quadrilateral add to 180°
				(C1 (dep on M1) for one appropriate circle theorem reason) OR M1 reflex $AOC = 360 - y$
				A1 $\frac{360 - y}{2}$ oe C2 (dep on M1) for both reasons
				<u>Angles</u> around a <u>point</u> add up to <u>360°</u> <u>Angle</u> at <u>centre</u> is <u>twice</u> the <u>angle</u> at the <u>circumference</u> (C1 (dep on M1) for one appropriate circle theorem reason)
H +			-	···· · · · · · · · · · · · · · · · · ·

Pearson Edexcel - Friday 14 June 2013 - Paper 2 (Calculator) Higher Tier

15.

*16	Angle $POT = 180 - 90 - 32 =$ 58 (angle between <u>radius</u> and <u>tangent</u> = 90° and sum of <u>angles</u> in a <u>triangle</u> = 180°) Angle OST = angle OTS = 58÷2 (ext angle of a triangle <u>equal</u> to sum of <u>int opp angles</u> and base <u>angles</u> of an <u>isos</u> triangle are <u>equal</u>) or (<u>angle at centre</u> = 2x <u>angle</u> at circumference) OR Angle SOT = 90 + 32 = 122 (ext angle of a triangle <u>equal</u> to sum of <u>int opp angles</u>) (180 - 122) ÷ 2 (base <u>angles</u> of an <u>isos</u> triangle are <u>equal</u>)	29	5	B1 for angle OTP = 90°, quoted or shown on the diagram M1 for a method that leads to $180 - (90 + 32)$ or 58 shown at <i>TOP</i> M1 for completing the method leading to "58"÷2 or 29 shown at <i>TSP</i> A1 cao C1 for "angle between <u>radius</u> and <u>tangent</u> = <u>90</u> °" and one other correct reason given from theory used NB: C0 if inappropriate rules listed OR B1 for angle OTP = 90°, quoted or shown on the diagram M1 for a method that leads to 122 shown at <i>SOT</i> M1 for (180 – "122") ÷ 2 or 29 shown at <i>TSP</i> A1 cao C1 for "angle between <u>radius</u> and <u>tangent</u> = <u>90</u> °" and one other correct reason given from theory used NB: C0 if inappropriate rules listed

Pearson Edexcel - Thursday 28 February 2013 - Paper 1 (Non-Calculator) Higher Tier

16.

L	· · · · ·			
19		68	3	M1 for angle $OBC = 90^{\circ}$ or angle $OAC = 90^{\circ}$ (may be marked on the diagram or used in subsequent working) M1 for correct method to find angle <i>BOC</i> or <i>AOC</i> or <i>AOB</i> e.g. angle $BOC = 180 - 90 - 34$ (= 56) or angle $AOC = 180 - 90 - 34$ (= 56) or angle $AOB = 180 - 2 \times 34$ (= 112) A1 cao
				NB (68 must be clearly stated as an answer and not just seen on diagram)

Pearson Edexcel - Monday 11 June 2012 - Paper 1 (Non-Calculator) Higher Tier

21*	$ABO = ADO = 90^{\circ}$	65°	4	B1 for $ABO = 90$ or $ADO = 90$ (may be on diagram)
	(Angle between tangent and radius is 90°)			B1 for $BCD = 65$ (may be on diagram)
	DOB = 360 - 90 - 90 - 50			C2 for $BCD = 65^{\circ}$ stated or $DCB = 65^{\circ}$ stated or angle C = 65° stated
	(Angles in a quadrilateral add up to			with all reasons:
	360°)			angle between tangent and radius is 90°;
	$BCD = 130 \div 2$			angles in a quadrilateral sum to 360°;
	(Angle at centre is twice angle at circumference)			angle at centre is twice angle at circumference
				(accept angle at circumference is half (or $\frac{1}{2}$) the angle at the centre)
	OR			(C1 for one correct and appropriate circle theorem reason)
	$ABD = (180 - 50) \div 2$ (Base angles of an isosceles triangle) BCD = 65			QWC: Working clearly laid out and reasons given using correct language
	(Alternate segment theorem)			OR
				B1 for $ABD = 65$ or $ADB = 65$ (may be on diagram)
				B1 for $BCD = 65$ (may be on diagram)
				C2 for $BCD = 65^{\circ}$ stated or $DCB = 65^{\circ}$ stated or angle C = 65° stated with all reasons:
				base angles of an isosceles triangle are equal;
				angles in a triangle sum to 180°;
				tangents from an external point are equal;
				alternate segment theorem
				(C1 for one correct and appropriate circle theorem reason)
				QWC: Working clearly laid out and reasons given using correct language

Pearson Edexcel - Friday 2 March 2012 - Paper 3 (Non-Calculator) Higher Tier

19	(a)		50°	2	B2 for Angle $BAD = 50$ and the sum of <u>opposite angles</u> in
			reason		a cyclic quadrilateral is 180
					(B1 for angle $BAD = 50$ or angle $BAD = 180 - 130$)
	(b)	Angle $BOD = 100^{\circ}$	65°	4	M1 angle BOD = 100° or ft 2 × their answer to (a) (may
		Angle OBD = angle ODC			be on diagram)
		Angle $ODC = (360^{\circ} - 230^{\circ}) \div 2 = 65$			M1 $360^{\circ} - (130^{\circ} + "100^{\circ}")$ and $\div 2$
					A1 cao
		OR			B1 The angle at the centre of a circle is twice the angle at
		Reflex angle $BOD = 260$			the circumference and Angles in a quadrilateral (4 sided
		Angle $BOD = 360 - 260 = 100$			shape) add up to 360° or opposite angles of a kite are the
		Angle OBD = angle ODC			same.
		Angle $ODC = (360^{\circ} - 230^{\circ}) \div 2 = 65$			
		3 • • • • • • • • • • • • • • • • • • •			OR
		OR			M1 angle $BOD = 100^{\circ}$ or ft 2 × their answer to (a) (may
		OB = OD			be on diagram)
		Angle $OCD = 130 \div 2 = 65$			M1 angle $ODB = OBD = 40^{\circ}$ and angle $CBD =$ angle
		and either			$CBD = 25^{\circ}$
		Angle OCD = angle ODC = 65			Al cao
		Or			B1 The angle at the centre of a circle is twice the angle at
		Angle $COD = 100 \div 2 = 50$			the <u>circumference</u> and <u>angles</u> in a <u>triangle</u> add up to 180°
		Angle $ODC = 180 - (65 + 50) = 65$			or Base angles of an isosceles triangle are equal. or radii
		Angle $ODC = 100 - (00 + 50) = 05$			of a circle are equal
					or a encie are equal

19b (contd)			OR M1 for obtuse Angle $BOD = 2 \times 130(=260)$ (may be on diagram) M1 for $(360 - (360 - 260) - 130) \div 2$ A1 cao
			B1 for <u>angle</u> at the <u>centre</u> is <u>twice the angle</u> at the <u>circumference</u> and sum of the <u>angles</u> in a <u>quadrilateral</u> is <u>360°</u> or <u>equal opposite angles</u> in a <u>kite</u>
			OR M1 Angle $OCD = 130 \div 2$ M1 Angle $OCD = angle ODC$ A1 cao B1 for <u>Kite</u> is <u>symmetrical</u> and <u>angles</u> in a <u>triangle</u> add up to 180° or radii of a circle are equal
			up to <u>100</u> of fault of a choic are equal

Pearson Edexcel - Wednesday 9 November 2011 - Paper 3 (Non-Calculator) Higher Tier

19.

19	CBD = 180 - A add to 180° CBD = 90° DCB = CDB =	le in a semi circle <i>CB</i> co-interior angles $(180^{\circ} - 90^{\circ}) \div 2$ in isosceles triangles	45	4	B1 B1 B1 B1	ACB = 90 (could be on the diagram) or 45 seen in a correct position on the diagram answer of 45 angle in a <u>semicircle</u> = 90 base angles <u>isosceles</u> triangle are equal or <u>alternate angles</u> are equal
----	--	--	----	---	----------------------	---

Pearson Edexcel - Monday 14 November 2011 - Paper 4 (Calculator) Higher Tier

20.

6	(a)	2x - 10 + x + 50 (ext angle of a triangle = sum of interior opp angles) OR 180 - (2x - 10 + x + 50) = 140 - 3x (sum of the angles in a triangle = 180) 180 - (140 - 3x) (sum of the angles on a straight line = 180)	Show result, with reasons	3	M1 for $2x - 10 + x + 50$ or $2x + x$ and $50 - 10$ A1 for completing the algebra to complete the proof and showing $y = 3x + 40$ B1 for 'ext angle of a triangle = sum of interior opp angles' OR M1 for $180 - (2x - 10 + x + 50)$ or $140 - 3x$ seen A1 for completing the algebra to complete the proof and showing $y = 3x + 40$ B1 for 'sum of the angles in a triangle = 180 ' oe and 'sum of the angles on a straight line = 180 ' oe
	(b)(i)	3x = 145 - 40 = 105 105 + 3 35 + 50 = 85	35	4	M1 for clear attempt to subtract 40 from both sides of the equation or divide all 3 terms by 3 or $(3x =)$ 145 – 40 or 105 seen A1 cao
	(ii)	$2 \times 35 - 10 = 60$ 180 - 145 = 35	85		M1 ft for $2\times^{3}5' - 10$ or $^{3}5' + 50$ or $180 - 145$ or can be implied by sight of 85 or 60 or for substituting $^{3}5'$ in order to find at least one angle implied by sight of 85 or 60 A1 for 85 or ft for $^{3}5'$ provided $^{4}x' < 47$

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

17	(a)	$BC \div 12 = 10 \div 6$ $BC = 10 \times 12 \div 6$	20	2	M1 for 12 ÷ 6 or 6 ÷ 12 or 10 ÷ 6 or 6 ÷ 10 oe or a decimal equivalent including 1.6, 1.66, 1.67 or 1.7 A1 19.9 – 20.4
	(b)	$PR \div 18 = 6 \div 10$ $PR = 6 \times 18 \div 10$	10.8	2	M1 for 6 × 18 ÷ 10 oe or 18 ÷ (1.6, 1.66, 1.67, 1.7) oe or a complete method ft '20' eg 12 ÷'20'× 18 A1 for 10.8

Pearson Edexcel - Friday 10 June 2011 - Paper 4 (Calculator) Higher Tier

22.

21	(i)	54	1	B1 cao
	(ii)	reason	1	B1 for angles in the same segment (are equal), or angles subtended at the circumference by the same chord (are equal) or angles subtended at the circumference by the same arc (are equal)

Pearson Edexcel - Tuesday 9 November 2010 - Paper 3 (Non-Calculator) Higher Tier

23.

9 (a)	180° - 60° or 60° + 60°	120°	2	M1 for 180 ÷ 3 or 60 as angle of triangle or 180 - 60 or 60 + 60 A1 cao
(b)		Reason	1	B1 for at least one correct reason and no incorrect reasons (ignore irrelevant reasons) 'angles on a straight line add to 180°' or 'angles in a triangle add up to 180°' or 'angles in an equilateral triangle are equal' or 'exterior angle of a triangle is equal to the sum of the interior angles at the two other vertices'

Pearson Edexcel - Friday 12 November 2010 - Paper 4 (Calculator) Higher Tier

24.

= 5 x = or	gle ADC = 180 - 128 52° = 2 × 52° Reflex angle AOC = 256° = 360 - 256	104	2	M1 for valid method to get angle <i>ADC</i> or 128 × 2 or 256° seen can be on the diagram A1 cao
------------------	---	-----	---	--

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

3	(i)	$ 180 - 110 = 70 \\ 180 - 2 \times 70 $	40	4	M1 for 180-110 or 70 seen M1 for 180-2×"70" or 110 - "70"
	(ii)		Reasons		A1 cao B1 for two out of three of: angles on a line add to 180°; isosceles triangle (accept 2 sides equal or 2 angles equal); sum of the angles in a triangle is equal to 180° OR for two out of three of: angles on a line add to 180°; isosceles triangle (accept 2 sides equal or 2 angles equal); exterior angle of a triangle is equal to the sum of the interior opposite angles

Pearson Edexcel - Monday 7 June 2010 - Paper 3 (Non-Calculator) Higher Tier

26.

27	PQT = 58° (Alternate segment theorem) QTP = (180 - 58)/2 (= 61°) (Isosceles triangle) OTQ = 61 - (90-58) (Angle between tangent and radius)	29	5	M1 for PQT = 58° or ½ (180 - 2(90 - 58)) M1 (dep) for QPT or QTP = (180 - "58")/2 A1 for OTQ = 29° B2 for fully correct reasons (B1 for alternate segment theorem or equivalent circle theorems leading to PQT)
	Alternative: $OTP = 90 - 58 (=32^{\circ})$ (angle between radius and tangent) $OTP = OPT = 32^{\circ}$ (isosceles triangle) $POT = 180 - 32 - 32 = 116^{\circ}$ (angles in a triangle) $PQT = 116 \div 2 = 58^{\circ}$ (angle at centre = 2 × angle at circumference) $QTP = QPT = (180 - 58)/2 (= 61^{\circ})$ (Isosceles triangle) OTQ = 61 - 32			

Pearson Edexcel - Thursday 5 November 2009 - Paper 3 (Non-Calculator) Higher Tier

18	(a)	55° Reason	2	B1 cao B1 Angle between tangent & radius, diameter (is 90°) OR alternate segment theorem
	(b)	55° Reason	2	B1 cao or ft (a) providing the answer is < 90° B1 Angle in a semicircle or angle subtended by a diameter (is 90°) OR alternate segment theorem

OCR GSCE – Monday 11 November 2019 – Paper 6 (Calculator) Higher Tier

16 a	50 nfwv	4	M3 for ABC = 25 or B = 25 or for AOB = 150 and COB = 160 or M2 for ABO = 15 and CBO = 10 or for AOB = 150 or for COB = 160 or M1 for ABO = 15 or CBO = 10 if 0 scored, SC1 for AOC = 2 × [<i>their</i>] ABC stated or applied or for 360 – <i>their</i> AOB – <i>their</i> COB applied Alternative method to find AOC = x M3 for $\frac{x}{2} + 2(\frac{180-x}{2}) + 15 + 10 = 180$ oe OR M1 for OAC = OCA = $\frac{180-x}{2}$ and M1 for ABC = $\frac{x}{2}$ Alternative method to find AOC = x M3 for $360 - x + 10 + 15 + \frac{x}{2} = 360$ OR M1 for ireflex AOC = $360 - x$	Throughout, angles could be on diagram SC0 for angle at centre = 2 × angle at circumference
b	e.g. DEF = 180 - (43 + 55) = 82 angles in a triangle HDF = DEF = 82 alternate segment theorem OR GDE = 55 alternate segment theorem HDF = 180 - (43+55) = 82 angles on a straight line	4	-	Allow full marks if 3 letter angle notation not used provided their angles are unambiguously defined (eg. labelled on the diagram and referred to in working using their labels) Note: 180 – (43 + 55) with no other creditable working or reasoning scores M1

OCR GSCE – Thursday 6 June 2019 – Paper 5 (Non-Calculator) Higher Tier

29.

9	(a)	1:5	2	B1 for [1] <i>k</i> : 5 <i>k</i> with both values numeric	e.g. B1 for 0.2 : 1, 30: 150
	(b)	30 , 75 , 75 and 30, 30, 120	4	B3 for 30, 75, 75 or 30, 30, 120 or B2 for <i>p</i> = 30 or M1 for 180 ÷ (1 + 5) FT <i>their</i> (a) If 0 scored, SC2 for 150, 15, 15	Accept each set in any order Could be on diagram

OCR GSCE – Tuesday 2 November 2017 – Paper 4 (Calculator) Higher Tier

30.

14		32.6 or 32.56 or 32.556	5	M2 for $\sqrt{(11^2 + 6^2)}$ soi by 12.52 to 12.53 or M1 for [] ² = 11 ² + 6 ² and M2 for tan [=] 8 + <i>their</i> 12.52 or M1 for 8 + <i>their</i> 12.52	accept any correct and full method note: HB = 14.866
----	--	-------------------------	---	---	---

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier

	Alternate segment or Reason on first line of working is incorrect	oe Any incorrect statement	в0	
	Add	litional G	uidance	
	Incorrect theorem stated in first line		B1	
	First line is incorrect. It should say alt	B1		
	Angles not in same segment	B1		
22	Angles in same segment are not equa	B0		
	Opposite segments (are not equal)	B0		
	First line is incorrect. It should say opp	B0		
	The angle between the chord and the the opposite segment	B0		
	Angle ACB is not in the same segmen	ernate	B0	
	Angles are not in the same segment, t	hey are a	lternate	B0

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 32.

	<i>a</i> + 65 + 115 + <i>c</i> = 360 or <i>b</i> + <i>c</i> = 180	M1	oe oe		
	a + c = 180 and $b + c = 180$ and $a = b$	A1	oe eg $c = 180 - a$ b = 180 - (180 - a) = a		
19	angles at a point and (co)interior angles	A1			
	Additional Guidance				
	Accept angles round a point for angles at a point				
	Accept allied angles for interior angles				

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier

	Alternative method 1			
	180 ÷ (5 + 7) or 180 ÷ 12 or 15	M1	oe	
	5 × their 15 or 180 – 7 × their 15 or 75	M1dep	oe	
	180 – their 75 – 20 or 180 – 95	M1dep	oe	
	85	A1		
24	Alternative method 2			
24	$x + \frac{7x}{5} = 180$ or $\frac{5y}{7} + y = 180$ or $y = 105$	M1	oe correct elimination of a variable from equations $x + y = 180$ and $7x = 5y$	
	$(x =) 180 \times \frac{5}{12}$ or $(x =) 75$	M1dep	oe	
	180 – their 75 – 20 or 180 – 95	M1dep	oe	
	85	A1		

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier

	Alternative method 1		
	PAB = 51 or PAD = 51 or APC = 180 – 51 or APC = 129	M1	
8	ABP = 180 - 51 - their 51 or $ABP = 180 - 102$ or $ABP = 78$ or $ADC = 180 - \text{their 51} - \text{their 51}$ ADC = 180 - 102 ADC = 78	M1dep	<i>PAB</i> = 51 and <i>PAD</i> = 51 or <i>BAD</i> = 102
Alt 1 of 2	BCD = 180 - their 78 or $BCD = 360 - \text{their } 129 - \text{their } 51$ - their 78 or $BCD = 360 - 258$ or $BCD = 102$ or $4x = 180 - \text{their } 78$ or $4x = 360 - \text{their } 129 - \text{their } 51 - \text{their } 78$ or $4x = 360 - 258$ or $4x = 102$ or $102 \div 4$	M1dep	oe eg $BCD = (360 - 2 \times \text{their } 78) \div 2$ or $4x = (360 - 2 \times \text{their } 78) \div 2$
	25.5	A1	

	Alternative method 2				
8 Alt 2 of 2	ABC = 180 - 3x - x or $ABC = 180 - 4x$ or $APC = 180 - 51$ or $APC = 129$	M1			
	PAB = 2x or $APB = 2x$ or $2x = 51$	M1dep			
	51 ÷ 2	M1dep			
	25.5	A1			
	Additional Guidance				
	Angles must be labelled or shown on	diagram			

AQA GSCE – Wednesday 8 November 2017 – Paper 3 (Calculator) Higher Tier

35.

	65	B1			
	Alternate segment (theorem)	B1dep			
19	Additional Guidance				
	65 alternative segment (theorem)			B1 B0	
	65 alternate angles			B1 B0	

AQA GSCE – Tuesday 13 June 2017 – Paper 3 (Calculator) Higher Tier

	Alternative method 1					
	BDC = 24	B1	May be on the diagram			
19	$DFC = \frac{180 - 24}{2}$ or $DCF = \frac{180 - 24}{2}$ or $\frac{156}{2}$ or 78	B1dep	May be on the diagram Finding a base angle in triangle <i>CDF</i>			
	2 (3x =) 180 – their 78 or (3x =) 24 + their 78 or (3x =) 102	M1	oe May be on the diagram			
	34	A1	May be on the diagram			
	Alternative method 2					
	BDC = 24	B1	May be on the diagram			
	DFC = 180 - 3x	M1	May be on the diagram			
	2(180 - 3x) + 24 = 180 or $360 - 6x + 24 = 180$	Midaa	oe			
	or 3x + 78 = 180 or (3x =) 102	M1dep				
	34	A1	May be on the diagram			
	Additional Guidance					
	If angles in the same segment are not used ie all the working is using triangle <i>ABF</i> then award maximum of 2 marks					
	If triangle <i>ABF</i> is assumed to be isosceles and there is no evidence of angle <i>BDC</i> = 24 being used then award maximum of 2 marks					
	If triangle ABF is used as isosceles and correctly justified then all marks are available eg 'triangle ABF is similar to triangle CDF '					
	Answer of 34 does not imply full marks					

Additional guidance continues on the next page

19 cont	Answer of 34 with no working	B0B0M1A1
	'their 78' must come from an attempt to calculate $\frac{180 - 24}{2}$	
	Angles must be clearly identified	
	eg D = 24	B1
	24 (unless shown on diagram)	B0